资源类型

期刊论文 187

会议视频 1

年份

2023 23

2022 29

2021 18

2020 19

2019 17

2018 7

2017 6

2016 11

2015 14

2014 10

2013 6

2012 5

2011 4

2010 4

2009 1

2008 7

2007 4

2000 1

展开 ︾

关键词

纳米粒子 2

纳米颗粒 2

5型腺病毒 1

Pickering乳液 1

二氧化硅 1

二维纳米颗粒 1

产品设计 1

介孔二氧化硅 1

代表性体积元 1

偶氮苯 1

光催化 1

光纤;光纤器件;基于二氧化硅特种光纤 1

内球配位 1

再生 1

分子开关 1

分子成像 1

分散机理 1

刚性 1

原子力显微镜 1

展开 ︾

检索范围:

排序: 展示方式:

Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater

Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1185-5

摘要: Mesoporous silica nanoparticle was modified with 4-triethoxysilylaniline. AMSN-based TFN-RO membranes were prepared for seawater desalination. Water transport capability of the AMSN was limited by polyamide. Polyamide still plays a key role in permeability of the TFN RO membranes. Mesoporous silica nanoparticles (MSN), with higher water permeability than NaA zeolite, were used to fabricate thin-film nanocomposite (TFN) reverse osmosis (RO) membranes. However, only aminoalkyl-modified MSN and low-pressure (less than 2.1 MPa) RO membrane were investigated. In this study, aminophenyl-modified MSN (AMSN) were synthesized and used to fabricate high-pressure (5.52 MPa) RO membranes. With the increasing of AMSN dosage, the crosslinking degree of the aromatic polyamide decreased, while the hydrophilicity of the membranes increased. The membrane morphology was maintained to show a ridge-and-valley structure, with only a slight increase in membrane surface roughness. At the optimum conditions (AMSN dosage of 0.25 g/L), when compared with the pure polyamide RO membrane, the water flux of the TFN RO membrane (55.67 L/m2/h) was increased by about 21.6%, while NaCl rejection (98.97%) was slightly decreased by only 0.29%. However, the water flux of the membranes was much lower than expected. We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.

关键词: Thin film nanocomposite membrane     Reverse osmosis     Seawater desalination     Aminophenyl-functionalized mesoporous silica nanoparticles    

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1198-1210 doi: 10.1007/s11705-021-2133-z

摘要: Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated. The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscope-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area, thermogravimetric analysis and n-butylamine acidity. The shape of catalysts particles plays an important role in its activity. The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production. The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid, oleic acid with methanol. The effect of various reaction parameters such as catalyst concentration, acid/alcohol molar ratio, catalyst amount, reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion. It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts. Additionally, the catalyst was regenerated and reused up to three cycles without any significant loss in activity. The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.

关键词: solid acid catalyst     mesoporous silica     sulfonic acid     biodiesel     esterification     oleic acid    

Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void

Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 114-122 doi: 10.1007/s11705-014-1413-2

摘要: Magnetic Fe O and mesoporous silica core-shell nanospheres with tunable size from 110–800 nm were synthesized via a one step self-assembly method. The morphological, structural, textural, and magnetic properties were well-characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N adsorption-desorption and magnetometer. These nanocomposites, which possess high surface area, large pore volume and well-defined pore size, exhibit two dimensional hexagonal ( 6mm) mesostructures. Interestingly, magnetic core and mesoporous silica shell nanocomposites with large void pore (20 nm) on the shell were generated by increasing the ratio of ethanol/water. Additionally, the obtained nanocomposites combined magnetization response and large void pore, implying the possibility of applications in drug/gene targeting delivery. The cell internalization capacity of NH -functionalized nanocomposites in the case of cancer cells (HeLa cells) was exemplified to demonstrate their nano-medicine application.

关键词: mesoporous silicas     magnetic nanoparticles     core-shell nanoparticles     cell uptake    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1224-1236 doi: 10.1007/s11705-022-2139-1

摘要: Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

关键词: Fischer–Tropsch synthesis     titanium incorporation     mesoporous silica     metal-support interactions     C5+ selectivity    

Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template

YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 135-139 doi: 10.1007/s11705-008-0031-2

摘要: The long-chain ionic liquid 1-hexadecyl-3-methylimidazolium chloride (CmimCl) was used as a template to prepare cerium-doped MCM-48 materials in basic medium by a hydrothermal synthesis procedure. The effect of the amount of Ce salt and CmimCl/Si on the synthesis were discussed in detail. This mesoporous material exhibits a pore architecture which is cubic 3 gyroid and possesses a large surface area and a narrow pore distribution. Cerium in calcined porous framework exists in the form of well-dispersed tetrahedral coordination. The CmimCl shows a high tendency toward self-aggregation that allows the formation of the cerium-doped gyroid mesostructure by using the appropriate amount of Ce salt.

关键词: mesoporous     CmimCl/Si     tendency     mesostructure     synthesis procedure    

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 329-338 doi: 10.1007/s11705-018-1741-8

摘要:

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

关键词: copper nanoparticles     mesoporous carbon     noble metal-free electrocatalyst     hydrazine oxidation reaction     polyaniline    

2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst

Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 389-395 doi: 10.1007/s11705-016-1575-1

摘要: A palladium catalyst supported on 2-aminopyridine functionalized cellulose was synthesized and fully characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectrometry. This catalyst can be applied in the Suzuki cross-coupling reaction of aryl halides with arylboronic acids in 50% ethanol to afford biaryls in?good yields, and easily recycled by simple filtration after reaction without the loss of metal Pd.

关键词: cellulose-supported     2-aminopyridine     palladium nanoparticles     ecofriendly catalyst     Suzuki cross-coupling reaction    

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1804-7

摘要:

● Cu-C-MSNs are developed via a co-doping step of Cu with L(+)-ascorbic acid.

关键词: Cation-π structures     Polarization electric field     Fenton-like process     Contaminants cleavage    

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1101-1113 doi: 10.1007/s11705-021-2095-1

摘要: Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

关键词: Janus nanoparticles     surfactant     double phase inversion     self-assembly     enhanced oil recovery    

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 341-355 doi: 10.1007/s11783-012-0472-1

摘要: Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

关键词: mesoporous materials     silica     metal oxide     hard-templating     environmental catalysis    

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2144-2155 doi: 10.1007/s11705-023-2362-4

摘要: This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2–xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2–xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2–xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.

关键词: copper sulfide nanoparticles     chemodynamic therapy     photothermal therapy     carbon dots     silica nanoparticles    

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive separation

《化学科学与工程前沿(英文)》   页码 1623-1631 doi: 10.1007/s11705-022-2202-y

摘要: The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents. Here, we report a simple but efficient strategy for dispersing active components by using a confined space, which is formed by mesoporous silica walls and templates in the as-prepared SBA-15 (AS). Such a confined space does not exist in the conventional support, calcined SBA-15, which does not contain a template. The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination, during which the template was also removed. The results show that up to 5 mmol·g–1 of CuO and ZnO can be well dispersed; however, severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading. Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO. The bimetallic materials were employed for the adsorptive separation of propene and propane. The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.

关键词: bimetallic adsorbents     confined space     mesoporous silica     propene/propane separation    

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2037-2049 doi: 10.1007/s11705-023-2358-0

摘要: Although mesoporous silica with magnetically hybridized two-dimensional channel structures has been well studied in recent years, it remains a challenge to fabricate the counterpart with macroporous three-dimensional cubic structures since the highly acidic preparation conditions lead to dissolution of magnetic particles. Herein, we successfully prepared magnetic KIT-6 nano-composite and its amino derivatives by bearing acid-resistant iron oxide. The prepared materials exhibited excellent properties for U(VI) ions removal from aqueous solutions under various conditions. The experimental data show that the U(VI) adsorption features fast adsorption kinetics, high adsorption capacity and ideal selectivity toward U(VI). The adsorption process is of spontaneous and endothermic nature and ionic strength independence, and the adsorbents can be easily regenerated by acid treatment. Compared to pristine KIT-6, the introduction of magnetism does not reduce the efficiency of the material to remove U(VI) while exerting its role as a recovery adsorbent. The findings of this work further demonstrate the potential broad application prospects of magnetic hybrid mesoporous silica in radionuclide chelation.

关键词: magnetic nanoparticle     3D mesoporous silica     amino functionalization     adsorption of U(VI)     acid resistance    

Quantification of hydration products in cementitious materials incorporating silica nanoparticles

L. P. SINGH,A. GOEL,S. K. BHATTACHARYYA,G. MISHRA

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 162-167 doi: 10.1007/s11709-015-0315-9

摘要: In the present work, silica nanoparticles (30-70nm) were supplemented into cement paste to study their influence on degree of hydration, porosity and formation of different type of calcium-silicate-hydrate (C-S-H) gel. As the hydration time proceeds, the degree of hydration reach to 76% in nano-modified cement paste whereas plain cement achieve up to 63% at 28 days. An influence of degree of hydration on the porosity was also determined. In plain cement paste, the capillary porosity at 1hr is ~48%, whereas in silica nanoparticles added cement is ~35 % only, it revealed that silica nanoparticles refines the pore structure due to accelerated hydration mechanism leading to denser microstructure. Similarly, increasing gel porosity reveals the formation of more C-S-H gel. Furthermore, C-S-H gel of different Ca/Si ratio in hydrated cement paste was quantified using X-ray diffractometer and thermogravimetry. The results show that in presence of silica nanoparticles, ~24% C-S-H (Ca/Si<1.0) forms, leading to the formation of polymerised and compact C-S-H. In case of plain cement this type of C-S-H was completely absent at 28 days. These studies reveal that the hydration mechanism of the cement can be tuned with the incorporation of silica nanoparticles and thus, producing more durable cementitious materials.

关键词: degree of hydration     porosity     calcium-silicate-hydrate (C-S-H)     silica nanoparticles    

标题 作者 时间 类型 操作

Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater

Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang

期刊论文

Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production

期刊论文

Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void

Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

期刊论文

Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template

YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen

期刊论文

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

Tao Zhang, Tewodros Asefa

期刊论文

2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst

Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei

期刊论文

Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction

期刊论文

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering

期刊论文

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

期刊论文

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions

期刊论文

Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive separation

期刊论文

Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration

期刊论文

Quantification of hydration products in cementitious materials incorporating silica nanoparticles

L. P. SINGH,A. GOEL,S. K. BHATTACHARYYA,G. MISHRA

期刊论文